Changes in Starch Formation and Activities of Sucrose Phosphate Synthase and Cytoplasmic Fructose-1,6-bisphosphatase in Response to Source-Sink Alterations.

نویسندگان

  • T W Rufty
  • S C Huber
چکیده

Short term experiments were conducted with vegetative soybean plants (Glycine max L. Merr. ;Ransom' or ;Arksoy') to determine whether sourcesink manipulations, which rapidly changed the ;demand' for sucrose and partitioning of photosynthetically fixed carbon into starch, were associated with alterations in activities of sucrose-P synthase and/or cytoplasmic fructose-1,6-bisphosphatase in leaf extracts. When demand for sucrose from a particular source leaf was increased by defoliation of other source leaves, starch accumulation was restricted and activities of both enzymes were markedly enhanced. When demand for sucrose from source leaves was limited by excision, starch accumulation in the detached leaves was increased while activity of sucrose-P synthase declined sharply. The consistent responsiveness of sucrose-P synthase activity to changes in demand for sucrose supports the contention that regulation of sucrose-P synthase is an integral component of the system which controls sucrose biosynthesis and partitioning of carbon between starch and sucrose biosynthesis in the light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis.

Experiments were conducted with vegetative soybean plants (Glycine max [L.] Merr., ;Ransom') to determine whether the activities in leaf extracts of key enzymes in sucrose metabolism changed during the daily light/dark cycle. The activity of sucrose-phosphate synthase (SPS) exhibited a distinct diurnal rhythm, whereas the activities of UDP-glucose pyrophosphorylase, cytoplasmic fructose-1,6-bis...

متن کامل

Effect of N-source on soybean leaf sucrose phosphate synthase, starch formation, and whole plant growth.

Soybeans (Glycine max L. Merr. cv Tracy and Ransom) were grown under N(2)-dependent or NO(3) (-)-supplied conditions, and the partitioning of photosynthate and dry matter was characterized. Although no treatment effects on photosynthetic rates were observed, NO(3) (-)-supplied plants in both cultivars had lower starch accumulation rates than N(2)-dependent plants. Leaf extracts of NO(3) (-)-sup...

متن کامل

Evidence for control of carbon partitioning by fructose 2,6-bisphosphate in spinach leaves.

Excision of spinach (Spinacia oleracea L.) leaves had no effect on photosynthetic rates, but altered normal carbon partitioning to favor increased formation of starch and decreased formation of sucrose. The changes were evident within 2 hours after excision. Concurrently, leaf fructose-2,6-bisphosphate content increased about 5-fold (from 0.1 to 0.5 nanomoles per gram fresh weight). The activit...

متن کامل

Source–sink imbalance increases with growth temperature in the spring geophyte Erythronium americanum

Spring geophytes produce larger storage organs and present delayed leaf senescence under lower growth temperature. Bulb and leaf carbon metabolism were investigated in Erythronium americanum to identify some of the mechanisms that permit this improved growth at low temperature. Plants were grown under three day/night temperature regimes: 18/14 °C, 12/8 °C, and 8/6 °C. Starch accumulated more sl...

متن کامل

Enzymic capacities of amyloplasts from wheat (Triticum aestivum) endosperm.

Lysates of protoplasts from the endosperm of developing grains of wheat (Triticum aestivum) were fractionated on density gradients of Nycodenz to give amyloplasts. Enzyme distribution on the gradients suggested that: (i) starch synthase and ADP-glucose pyrophosphorylase are confined to the amyloplasts; (ii) pyrophosphate: fructose-6-phosphate 1-phosphotransferase and UDP-glucose pyrophosphoryla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 1983